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Abstract 
Cracks are one of the main defect features on 

concrete surfaces, and indicators of concrete 
structures’ condition regarding their state of health. 
Since traditional methods to identify and assess 
cracks rely on manual measurements, a significant 
number of studies to date have focused on identifying 
ways to automate this process. Accordingly, this study 
proposes to combine Convolutional Neural Network 
(CNN)-based algorithms and traditional image 
morphological operation for crack detection and 
measurements with a specific goal to benchmark the 
proposed methodology on data of three images 
obtained from laboratory experiments in a controlled 
environment. The proposed methodology performed 
well, with 92.10% and 90.11% accuracy in crack 
length and width measurements, respectively. Future 
research will focus on fine-tuning the proposed crack 
detection and measurement methodology and 
evaluate them on a set of images acquired from a real 
full-scale structure such as a bridge or a building. 
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1 Introduction 
According to the recent infrastructure report from the 
American Society of Civil Engineers (ASCE), 
approximately 231,000 bridges across the United States, 
or 37.4% of all bridges in the nation, need repair and 
preservation work, and 46,154, or 7.5% of the nation’s 
bridges, are considered structurally deficient [1]. To 
prevent infrastructure failures, periodic inspections are 
needed to determine their condition. One of the most 
important procedures during periodic inspections are 
visual inspections carried out to identify and assess 
surface defects. 

Cracks are one of the main defect features on concrete 
surfaces, and indicators of concrete structures’ condition 

regarding their stability and durability [2]. Thus, the 
identification and assessment of cracks plays a 
paramount role in concrete structures’ inspections. 
However, since the traditional methods to identify and 
assess cracks mostly rely on manual measurements, 
which are labor intensive and error prone, several recent 
research efforts have focused on leveraging computer 
vision and machine learning techniques to automate this 
process.  

Several image-based crack detection and 
measurement techniques, including deep learning-based 
algorithms, have been proposed to date to automate crack 
identification and assessment processes. These studies 
proposed various image-based crack detection methods 
that use edge detection algorithms [4]-[6], automatic 
threshold image segmentation [7], and image 
morphological operations [8][9]. In recent years, the 
focus has been on utilizing deep learning-based 
algorithms due to their robustness and accuracy. These 
studies utilized convolutional neural networks (CNN) 
architectures [10]-[13], and performed better compared 
to previously proposed computer vision-based methods 
[14]-[20]. 

Even though image-based methods have been proven 
to be effective in detecting cracks, most of them perform 
well when applied to images with well-distinguishable 
cracks, i.e., cracks with prominent edge-gradient changes, 
and none to minimal number of non-crack objects such 
as stains. In addition, deep learning-based crack detection 
algorithms require large number of training dataset of 
images and heavy computing resources. Therefore, it can 
be concluded that the currently available computer 
vision-based methods to identify and assess surface 
defects are not mature enough to be used in real-life 
scenarios, e.g., on data collected from bridges or 
buildings.  

Several studies have focused on fine-tuning the 
previously proposed algorithms for crack detection and 
measurement to overcome the limitations summarized 
above. Moreover, to achieve an acceptable level of 
accuracy and sensitivity on real-case scenarios, new 
approaches that combine different methods (e.g., deep 
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learning and 3D point cloud) have been proposed.  
Accordingly, this study aims to benchmark CNN 

based deep learning algorithms for crack detection and 
measurements on data obtained from a laboratory 
experiment in a controlled environment. A methodology 
that combines a CNN-based algorithm and the traditional 
image morphological operation is presented for crack 
detection. Next, skeletonization and orthogonal 
projection algorithms were applied to measure the crack 
length and width and their overall performance were 
evaluated. 

2 Literature Review 
In this section, previous studies on crack detection 

and measurements are reviewed. First, crack detection 
methods based on conventional image morphological 
operations, deep learning algorithms, and the approaches 
that combine the first two are examined and their 
strengths and weaknesses are discussed. Next, the studies 
that focused on crack measurements are analyzed. Finally, 
the methods selected for crack detection and 
measurement in this study are introduced.  

2.1 Crack Detection 
The majority of studies that focused on automating 

crack detection used digital images as input data. Thus, 
conventional object detection and segmentation 
algorithms are very important and play a major role in 
image-based crack detection. Initially, researchers have 
focused on detecting crack edges since they are the most 
distinguishable crack features, and various edge 
detection methods, such as Sobel, Prewitt, and Canny 
have been utilized for this purpose [4]-[6]. These 
methods detect crack edges based on prominent gradient 
changes in the image, especially the changes in intensity 
in certain directions along the feature of interest. If the 
gradient changes are not significant, meaning that the 
crack is not clearly distinguishable, the overall crack 
detection performance decreases drastically. Hence, 
several studies focused on extracting crack edges by 
applying various image processing algorithms. 

To extract cracks, i.e., separate them from the 
background details in each image, Otsu [7] proposed a 
segmentation method based on image thresholding 
approach that uses the maximum grayscale intensity 
values in the image. Nguyen et al. [8] proposed the Free-
Form Anisotropy method, which simultaneously 
considers various crack features including intensity 
values, texture, and others to detect cracks more 
accurately. Following these two approaches, several 
research studies applied morphological operations to 
pre/post process images for feature extraction purposes. 
For example, Xu and Turkan [9] presented an approach 
for automated crack detection using images of a bridge 

acquired from an unmanned aircraft system (UAS). They 
applied Otsu’s image gradient segmentation method and 
additional image pre-processing steps including contrast 
adjustment and noise reduction for crack detection and 
reported precision and recall values of 74.6% and 86.2%, 
respectively. 

Although most crack detection methods based on 
image morphological operations have performed well 
and yielded meaningful results, issues such as the 
presence of shadows or stains, features similar to cracks, 
impact the performance of these methods negatively. 

Meanwhile, several studies focused on utilizing deep 
learning-based object detection methods. The major 
CNN-based vision architectures, such as AlexNet [10], 
VGG-Net [11], Inception Network [12], ResNet [13],  
which performed well in detecting and classifying 
various objects, were utilized for image-based crack 
detection in several studies. 

Dorafshan et al. [21] compared the performance of 
conventional edge detectors (Roberts, Prewitt, Sobel, 
Laplacian of Gaussian, Butterworth, and Gaussian) and a 
CNN-based crack detector. They tested AlexNet-based 
crack detector using fully trained, partially re-trained, 
and pre-trained datasets to determine its performance 
under different circumstances. They used images from 
SDNET dataset that include images with various surface 
defects [22]. The CNN-based crack detector performed 
well when a fully trained dataset used, with precision 
value of 99% and recall value of 66%. The precision 
values for partially trained and pre-trained datasets were 
92% and 80% while the recall values were 86% and 84% 
respectively. In the meantime, the conventional edge 
detector based on the Laplacian of Gaussian algorithm 
achieved the precision and recall values of 60%, and 79%, 
respectively, which was the best performance among 
conventional methods. Wang et al. [23] tested the crack 
detection accuracy of six existing CNNs (VGG 16, 
Inception V2, V3, V4, Inception-ResNet-v2, and ResNet 
V1 50), using an original image dataset collected from 
the inspection of a slab element and the highest accuracy 
was obtained when using the Inception-ResNet-v2 
network, with 80.08% of accuracy when utilizing pre-
processed dataset. 

Recent studies that focused on automatic crack 
detection proposed to combine different methods to 
improve the accuracy and reliability of the results. 
Several studies focused on augmenting digital images 
with three-dimensional (3D) data such as point clouds 
acquired using a laser scanner (i.e., lidar) to overcome the 
issues faced when using image-based methods such as 
loss of feature (crack) details due to shadows. Chen et al. 
[2] utilized point cloud data to obtain a depth image, 
which illustrates features in the image based on their 
measured depth. The depth image was then combined 
with the pre-processed image, and by applying Otsu’s 
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crack detection algorithm, the proposed approach 
achieved, on average, 89.0%, 84.8%, and 86.7%, 
precision, recall and F1, respectively. Yan et al. [3] also 
utilized point cloud data to identify cracks, which 
enabled them to exclude background and other non-target 
segments in data processing, which is one of the most 
challenging issues for images obtained in real life cases, 
e.g., images of a bridge. Simultaneously, they processed 
images including the same crack features, obtained from 
the three columns of a bridge, using a VGG16-based 
crack detector. By combining the results obtained from 
point cloud and image-based methods, they achieved 93% 
crack detection accuracy on average, and obtained a 
precision and recall values of 93.9%, and 89.4%, 
respectively. 

2.2 Crack Measurement 
Recent studies on image-based crack measurements 

have focused on implementing a skeletonization 
algorithm to guarantee the accuracy of the measurements 
[3][23][24]. Using binary images, which contain the 
geometry of cracks, the skeletonization algorithm creates 
the centerline of the crack in one-pixel thickness. From 
this centerline, referred to as the crack skeleton, the 
length of a crack can be measured in pixel dimensions by 
counting the number of pixels along centerline. To 
measure crack width, the most accurate method proposed 
in previous studies calculates the continuous width of 
each pixel on the crack skeleton using the orthogonal 
projection algorithm [3][23][24], which is explained next. 
First, the orientation of each crack pixel is computed by 
fitting a line to the target pixel and its neighboring pixels 
on the crack skeleton. Then, an orthogonal line, which is 
perpendicular to the orientation of the crack in the target 
pixel, is projected to obtain two intersecting points 
between the orthogonal line and crack boundaries. In the 
final step, the width of the crack is calculated as the 
distance between these two intersecting points. 

Qiu et al. [24] validated the performance of width 
measurement based on the skeletonization and the 
orthogonal projection algorithms. Using images that 
contained ten different cracks, with widths ranged 
between 18.1mm and 66.3mm (with an average of 36.4 
mm), they calculated 1.4 mm difference, on average, 
between the ground truth values and their results. A study 
from Yan et al. [3], which utilized both CNN-based crack 
detector and point cloud data, presented, and tested their 
crack measurement approach based on skeletonization 
and orthogonal projection algorithms. The test datasets 
they used included cracks with lengths ranged between 
44.5mm to 559.0mm and widths ranged between 1.0mm 
to 5.0mm. They obtained average error rates of ±3% and 
±8% for length and width measurements, respectively. 
Wang et al. [23], who also adopted skeletonization and 
orthogonal projection methods, mainly focused on 

classifying crack images into three classes based on their 
severity levels, i.e., average crack widths. They used an 
image dataset that contains cracks with an average width 
of less than 1.0mm and classified the dataset with the 
average accuracy of 97.41%.  

One of the most essential steps in crack 
measurements is the conversion of measurements into 
real scale. This process converts the measured pixel 
dimensions into units such as mm or inches. For example, 
Wang et al. [23] utilized the width of railhead in the 
image as a reference. Since the actual geometric width of 
the railhead can be identified from its specifications 
document, the conversion factor can be easily calculated. 
This is a straightforward approach for conversion, but the 
images must contain a certain target feature with known 
dimensions in real world units. Also, during data 
collection an appropriate camera angle must be 
maintained. Another scale conversion approach is to 
utilize data from other sources. For example, Yan et al. 
[3] used values of depth and focal length of the lidar data 
to compute the scale factor. Kalfarisi et al. [25] utilized 
dimensions from the 3D mesh model, which was 
reconstructed from 2D images. The 3D mesh model 
provided the dimensions in both pixels and metric units.  

3 Methodology 

3.1 Crack Detection 
In this study, a CNN-based crack segmentation 

algorithm called DeepCrack, which is proposed by Liu et 
al. [14], and a traditional image morphological operation 
based on Otsu’s image segmentation algorithm [7] are 
combined for image-based crack detection. DeepCrack is 
a CNN-based crack segmentation algorithm that uses the 
VGG-16 network, one of the major vision architectures 
in computer vision. In this study, a pre-trained 
DeepCrack algorithm model, which was trained with 
4,800 images and 3,792 images, was used for testing. The 
overall performance of the pre-trained DeepCrack model 
is as follows: the global prediction accuracy is 98.73%, 
while precision, recall and F1 scores are 85.82%, 84.56%, 
and 85.18%, respectively [14]. In the next step, the image 
morphological operation, which is based on Otsu’s image 
segmentation algorithm along with additional pre-
processing (e.g., contrast adjustment, smoothing) and 
post-processing (e.g., area filtering) steps [9] were 
implemented. 

The detailed crack detection procedure followed in 
this study is provided in Figure 1.  
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Figure 1. Crack Detection Procedure 

First, the original image is pre-processed using 
grayscale conversion, brightness adjustment, and 
contrast enhancement techniques, respectively. In the 
next step, two different methods are applied to the pre-
processed images in parallel: 

1. The first method involves using the pre-processed 
image as an input for the pre-trained DeepCrack 
model. Next, the result from the DeepCrack 
algorithm is post-processed using image saturation 
parameters, and binarized to obtain a binary image. 

2. The second method used is a conventional image 
morphological operation process that consists of 
procedures that include smoothing and discarding 
unnecessary details of non-crack features, bottom-
hat transformation to extract dark regions that are 
not cracks, and pre-area filtering that uses a certain 
threshold value to extract detailed features of cracks, 
which may have been excluded from DeepCrack 
segmentation results. 

After the two-track process based on DeepCrack and 
image morphological operations, the preliminary results 
obtained from each step are integrated. Next, the image 
was post-processed using second area filtering and a 
hole-filling operation. Lastly, the crack boundaries are 
extracted using image gradient thresholding technique. 

3.2 Crack Measurement 
In this study, two prominent crack measurement 

methods, the skeletonization and orthogonal projection 
algorithms, are used (Figure 2). The binary image 
obtained at the end of the crack detection process, is 
skeletonized. Since the original crack skeleton contains 
several branches that are not related to the crack length 
or the main orientation, a post-processing method was 
used to filter those branches (i.e., pruning). Next, the 
orthogonal projection algorithm is applied to the crack 
skeleton. The orientation of the crack skeleton is 
computed in each pixel, and the target pixel’s orthogonal 
line is projected. By merging these projected orthogonal 
lines and the binary image of crack boundary from the 
crack detection step, two intersecting points between the 
orthogonal line and crack boundaries are obtained. As 
detailed in section 2, the crack length is measured by 
counting the number of pixels along the crack skeleton, 
and the width of the crack is measured by calculating the 
distance between the orthogonal line and crack 
boundaries. Finally, the crack length and width 
dimensions, which were calculated in numbers of pixels 
are converted into metric dimensions using the 
dimensions of the specimen that is used in this study. 

 
Figure 2. Crack Measurement Procedure 

4 Experiment 
The crack detection and measurement methods 

detailed in section 3 were applied to three images taken 
during a series of shear strength tests conducted at the 
University of Washington Structures laboratory and the 
performance of both methods are evaluated. The test data 
and the experimental procedure are detailed below. 

4.1 Test Data 
The test data used this study are three images obtained 
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from the shear strength tests on ultra-high-performance 
concrete (UHPC) [26]. For each test, an 890 × 890 x 70 
mm UHPC panel was tested under shear loads using the 
UW Panel Element Tester. The experimental setup was 
such that a major crack would form at a pre-selected 
location. The crack obtained at the end of this test was 
used as the target crack to be detected and measured in 
this study (Figure 3, Top).    

The original test images were manually cropped and 
trimmed to extract regions of interests, which contain the 
target crack (Figure 3, Bottom). The size of the manually 
cropped test images that contains the regions of interests 
are 1808 × 1748, 1350 × 1394, and 2044 × 2011 pixels, 
respectively (left to right, i.e., images 1-3). 

 
Figure 3. Original Image (Top) and Manually 
Cropped Test Image (Bottom) 

4.2 Experiment Procedure 
The images obtained from the laboratory experiments 

in a controlled environment are processed using the crack 
detection and measurement methods detailed in section 3. 
First, the performance of the crack detection method is 
evaluated based on feature segmentation accuracy that is 
determined using both the continuity of the feature, and 
the sensitivity such as preserving the details of the crack. 
Next, the measured values of length and width are 
compared with the manually annotated ground truths. 
More specifically, the length measurements obtained 
automatically following the procedure described in 
section 3.1 are directly compared to the manually 
annotated length from the image. For crack width 
comparison, five checkpoints along the crack are selected 
in each image, and the automatically measured widths in 
the checkpoints are compared with manually annotated 
widths. This experiment is designed to fine-tune the 
methodology described in section 3. Once the fine-tuning 
is achieved, the overall goal of this study is to apply this 
methodology to real case scenarios, e.g., images 
collected from bridges.  

5 Results 

5.1 Crack Detection 
The crack detection results based on the methodology 

proposed in this study are presented in Figures 4 and 5. 
As can be seen, the cracks in all three images were 
detected, and their boundaries were extracted 
successfully. One issue that needs to be discussed here is 
that there is a loss in details where the crack branches are 
very thin (Figure 6). These narrow cracks are negligible 
when assessing reinforced concrete bridges for severe 
conditions according to North America standards [27], 
since this type of damage does not affect the integrity of 
the structure. Note that the average width of the cracks 
that were lost at the end of the detection process using the 
proposed methodology is 0.76 mm, which is manually 
measured at thirty random points and averaged. 

 
Figure 4. Test Images (Top) and the Crack 
Detection Results (Bottom) 

 
Figure 5. Detailed Detection Results obtained for 
Image 1 
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Figure 6. Detail Losses from Crack Detection 

5.2 Crack Measurement 
First, a real-scale conversion factor is calculated to 

convert pixel-dimensions into metric dimensions (in 
millimeter). The widths of the concrete panel in each 
image were manually measured directly, and the 
measured values of images 1, 2, and 3 are 1,770.6, 1375.4, 
and 1939.2 pixels respectively, which equaled to 890 mm. 
Using these values, the conversion factors for three 
images were calculated as 0.5027, 0.6471, and 0.4590 
mm/pixel, respectively. 

Second, the performance of skeletonization and 
branch filtering algorithms is evaluated. After branch 
filtering based on the threshold to obtain the proper crack 
skeleton in a 1-pixel thickness, the losses of pixels on 
either end of each of the cracks are observed (see Figure 
7). The total losses in length along the main crack due to 
the branch filtering were 28.51, 34.78, and 30.29 mm in 
images 1 through 3, respectively. 

 
Figure 7. Skeletonization Result and Pixel Loss 
due to Branch Filtering 

Third, the length measurement results are evaluated 
(Table 1). The measured length along the main crack 
skeleton in image 1 is 1019.48 mm, which contains 2028 

pixels. The main crack skeleton in image 2 is measured 
as 798.52 mm, or 1234 pixels, and 772.42 mm, or 1683 
pixels for image 3. The actual crack length (ground truth) 
was calculated by dividing each crack into ten segments 
since the crack is not straight, and then manually 
measuring each segment and adding them up. At the end 
of this process, it was determined that the total crack 
length (ground truth) of each crack in three images are 
1071.94, 914.07, and 823.15 mm for images 1 through 3: 
corresponding to 95.11%, 87.36%, and 93.84% accuracy 
in length measurement respectively.  

Table 1. Length Measurement Results 

Image Proposed 
method 
(mm) 

Ground 
Truth (mm) 

Accuracy 
(%) 

1 1019.48 1071.94 95.11 
2 798.52 914.07 87.36 
3 772.42 823.15 93.84 

Average 92.10 

 
Lastly, the crack width measurement result is 

evaluated by measuring the width from five random 
checkpoints along each crack in the three images. Using 
the coordinates of the checkpoints, the width was 
measured using the method detailed in section 3.2. The 
actual crack widths (ground truths) at each checkpoint are 
manually measured directly from the original image. The 
automatic width measurement results (based on 
orthogonal projection) as well as the ground truth values 
for all check points are provided in Table 2. As can be 
seen, the average width measurement accuracy for each 
image is 90.54%, 90.78%, and 89.01%, respectively.  

 
Figure 8. Representation of Width Measurement 
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Table 2. Width Measurement Results 

Checkpoint Automated 
Measurement 

(mm) 

Ground 
Truth 
(mm) 

Accuracy 
(%) 

1.1 13.51 15.29 88.36 
1.2 3.83 4.32 88.86 
1.3 15.78 16.41 96.16 
1.4 12.42 14.00 88.71 
1.5 13.05 14.40 90.63 

Average - 1 90.54 
2.1 29.77 27.00 89.75 
2.2 11.65 13.28 87.73 
2.3 10.11 11.45 88.30 
2.4 9.15 9.71 94.23 
2.5 53.55 50.47 93.88 

Average - 2 90.78 
3.1 14.69 15.42 95.27 
3.2 12.75 12.22 95.65 
3.3 22.03 17.66 75.27 
3.4 30.78 37.73 81.58 
3.5 25.04 25.74 97.28 

Average - 3 89.01 
Total Average (1, 2, 3) 90.11 

6 Conclusions 
Visual inspections to identify and assess surface 

defects are important to ensure structural safety. In 
particular, dimensions of surface cracks are used to 
determine concrete structures’ condition in terms of their 
stability and durability. However, the assessment of 
concrete cracks still relies on manual identification and 
assessment. Therefore, recent research has focused on 
leveraging computer vision and machine learning 
techniques to automate this process.  

This study presented a methodology that combined 
CNN-based algorithms and the traditional image 
morphological operation for crack detection, and 
implemented a crack measurement approach based on 
skeletonization and orthogonal projection algorithms. 
This approach was tested on using data from three images 
obtained from the shear strength test on UHPC, which 
was conducted in a controlled laboratory environment. 
This was done to evaluate the proposed approach and fine 
tune it for future applications, including data collected 
from real-life structures, e.g., bridges, building, etc. 

The results showed that the proposed crack detection 
method detected the crack and its boundary accurately. 
However, some of the crack details, with an average 
width of 0.76 mm, were lost. This was considered to be 
insignificant since those details do not have a major 
impact on the structural integrity compared to the larger 
cracks. Next, the results from skeletonization and branch 
filtering algorithms were tested. Both algorithms could 

extract the crack skeleton with a thickness of 1-pixel, 
which is essential for the following measurement 
procedures. Lastly, the accuracy of the proposed crack 
measurement method was evaluated with manually 
measured ground truth values from the original images. 
The proposed crack measurement method was found to 
be promising as it measured the crack length with 92.10% 
accuracy and the crack width with 90.11% accuracy.  

To summarize the results, the proposed methodology 
for crack detection and measurement performs well and 
is capable of achieving the level of accuracy reported in 
previous studies. However, since the ground truths used 
in this study was obtained through manual annotations in 
the digital image, it is recommended that more precise 
evaluation based on real crack dimensions (measured 
physically using a tape) should be performed in future 
studies. 

The study presented in this paper represents an 
important step in an overall research framework that aims 
to utilize unmanned aircraft system (UAS) images to 
automatically identify and measure surface defects of 
large structures such as bridges and map that information 
to Building Information Models (BIM), so that inspection 
reports are integrated with structural drawings and 
models in a single database. Accordingly, after fine-
tuning the crack detection and measurement methods 
proposed in this paper, they will be evaluated on a set of 
images acquired from a bridge using an UAS and the 
results will be mapped to the corresponding BIM.   
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